

INNOVATING WITH PURPOSE

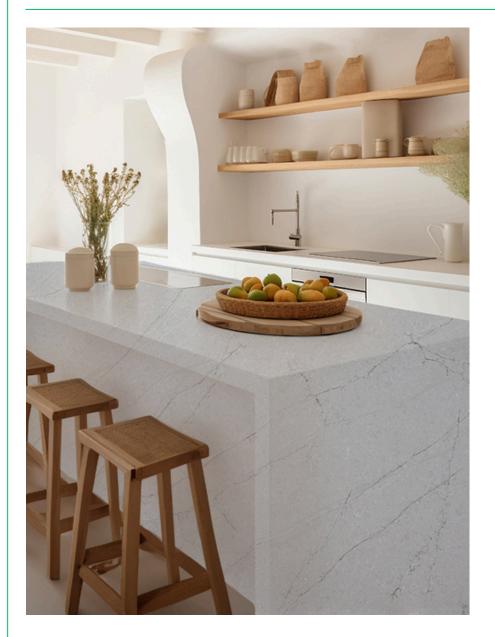
Life Cycle Assesment

Building a Sustainable Tomorrow

Kitchens have transformed from functional spaces to the heart of modern homes, while global awareness of environmental sustainability has deepened significantly. Recognizing these changes, we have embraced the challenge of evolving in a way that honors our commitment to innovation, responsibility, and excellence.

In 2023, we embarked on a pivotal chapter in our journey. As part of a global restructuring plan designed to enhance operational efficiency and minimize environmental impact, we made the difficult decision to transition from some of our legacy operations. This included the closure of a historic manufacturing site that played a foundational role in our early days. While these changes were necessary, they were guided by our unwavering focus on operational excellence, cost efficiency, and sustainable practices.

As a trusted leader in the industry, we remain steadfast in our dedication to meeting the everevolving needs of our customers and partners. Our commitment to sustainability has driven significant strides in research and development, paving the way for groundbreaking innovations in surface technology.


At PACIFIC, we have undertaken a strategic transformation to expand our product portfolio, incorporating innovative materials that align with our long-term vision for growth and sustainability. Each initiative we implement reflects our commitment to addressing the demands of a changing world while striving for excellence in environmental performance and product safety throughout every stage of the lifecycle.

Our success is fueled by a vibrant community of employees and partners who share a belief in the power of human creativity to shape something extraordinary. Together, we are creating a culture of governance that upholds the highest standards of business integrity while continuously striving to innovate and lead. At PACIFIC, we don't just adapt to change—we embrace it, ensuring our journey continues to inspire and pave the way for a brighter, more sustainable future.

Environmental Commitment

We are committed to protecting and sustaining the environment with a focus on material use, energy, water and waste.

Reducing our Carbon Footprint

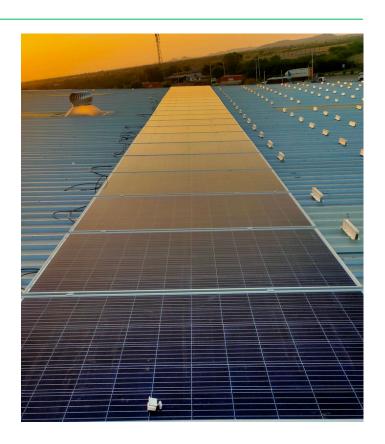
Reducing our Water Usage

Expanding use of Renewable Energy Sources

Increasing use of Recycled Materials

At PACIFIC, our commitment to the environment goes beyond responsibility—it is a cornerstone of everything we do. We believe that a sustainable future begins with conscious choices and innovative practices. By integrating renewable energy, advanced water recycling systems, and eco-friendly materials into our operations, we actively reduce our environmental footprint. Our initiatives are designed to protect natural resources, minimize waste, and promote long-term sustainability. This approach reflects our dedication to crafting products that not only enhance spaces but also contribute to a healthier planet. At PACIFIC, we strive to set new benchmarks for environmental stewardship in the surfaces industry.

Powered by Nature


Windmill Energy

In our pursuit of sustainable development, we have made significant investments in renewable energy. One of the cornerstones of our strategy is our windmill installation, powered by Siemens Gamesa, a globally renowned leader in wind energy. This initiative not only reduces our reliance on non-renewable energy sources but also significantly lowers our carbon footprint, aligning with our commitment to environmental protection.

Solar Energy

Our dedication to reducing humanity's carbon footprint is reflected in our extensive use of solar energy. We have harnessed the power of the sun to fuel our operations, making us one of the largest solar-powered quartz companies in India. Our solar power generates 2 MW of renewable energy, which fully supports our manufacturing processes. This commitment to solar energy helps us operate sustainably while contributing to global efforts to combat climate change.

Sustainable Sourcing

We carefully select ethical suppliers who prioritize environmentally responsible practices, ensuring our mineral surfaces are sourced sustainably. By using low-crystalline silica, supporting both safety and environmental standards. Additionally, our surfaces incorporate premium minerals alongside recycled materials, which minimizes the need for new raw resources and helps lower our environmental impact.

Water Treatment Plant

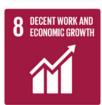
At PACIFIC, we have implemented a water treatment plant to recycle water used in processes like slab trimming, polishing, and fabrication. This system efficiently separates sludge using filter press technology, enabling eco-friendly disposal. By reusing water, we address resource scarcity and eliminate challenges in managing contaminated water. Our sustainable approach ensures seamless operations while minimizing environmental impact.

Green Transportation

We're committed to lowering our carbon footprint through green transportation initiatives. Our operations incorporate electric and hybrid vehicles, which reduce emissions and reliance on fossil fuels. By transitioning to cleaner vehicle options, we not only enhance sustainability but also set a standard for eco-friendly practices within our industry. This approach reflects our dedication to environmental responsibility at every level of our operations.

Sustainable Development Goals (SDGs)

As a global leader, PACIFIC recognizes its responsibility to contribute meaningfully to the United Nations Sustainable Development Goals (SDGs). Established in 2015 as part of the 2030 Agenda for Sustainable Development, these 17 goals address the world's most critical social, environmental, health, and economic challenges, aiming to create a better and more sustainable future for all. At PACIFIC, we have identified the SDGs that align most closely with our values and areas of impact. These goals guide our strategies, shaping the policies and actions we implement to drive positive change. By focusing on these key areas, we aim to address pressing global issues while fostering innovation, inclusivity, and environmental stewardship in everything we do. Through our commitment to the SDGs, PACIFIC strives to lead by example, demonstrating how businesses can be a force for good in building a sustainable future.



3

GOOD WEALTH AND WELL-BEING

Ensure healthy lives and promote well-being for all at all ages

At PACIFIC, we prioritize the health and safety of our workforce, suppliers, and partners by adhering to global standards and implementing comprehensive training programs. These initiatives are designed to foster a safe working environment and promote well-being across every stage of our operations. The **NSF** Certification not only underscores the reliability and hygiene of our products but also builds trust with our customers by providing assurance of their safety. By achieving this globally recognized standard, PACIFIC continues to lead the industry in delivering surfaces that are not only durable and beautiful but also safe and reliable for everyday use.

GENDER EQUALITY

Eliminating gender bias and promoting inclusivity

We strive to create a workplace where opportunities are equitable, and contributions are valued regardless of gender. Our policies are designed to ensure fair hiring practices, equal pay, and a supportive environment that fosters growth for everyone. By embedding these principles into our organizational framework, PACIFIC actively contributes to building a future where gender equality is the standard, not the exception. We believe that true progress comes from collaboration, inclusivity, and the collective drive to achieve sustainable development for all.

8

DECENT WORK AND ECONOMIC GROWTH

fostering sustainable practices, creating productive employment opportunities

Our approach focuses on providing safe and inclusive workplaces that empower our employees and partners to thrive. We ensure compliance with global labor standards and actively work to eradicate workplace inequalities, offering equal opportunities for growth and development. Our commitment extends to fostering fair wages, maintaining high safety standards, and creating an environment where creativity and collaboration can flourish. PACIFIC also supports local economies by sourcing responsibly, building strong supply chain partnerships, and promoting skill development within the communities we operate.

INDUSTRY, INNOVATION & INFRASTRUCTURE

Building resilient infrastructure, promoting inclusive and sustainable industrialization, and fostering innovation.

Our focus lies in leveraging advanced technologies and sustainable practices to drive progress within the surfaces industry. We invest in cutting-edge manufacturing processes that reduce environmental impact while enhancing efficiency. By adopting innovative solutions such as water recycling systems and renewable energy integration, we set benchmarks for sustainability in industrial operations.

RESPONSIBLE CONSUMPTION & PRODUCTION

Ensuring sustainable consumption and production patterns.

We achieve this by adopting eco-friendly manufacturing practices that prioritize resource efficiency and waste minimization. By integrating recycled materials, such as glass, into our products and utilizing advanced technologies like water recycling systems, we significantly reduce our environmental footprint. PACIFIC's commitment to responsible production is validated through globally recognized certifications like ISO 9001:2015, ensuring the highest quality standards, and NSF Certification, which guarantees our surfaces meet stringent safety and sanitation requirements, making them safe for food preparation and everyday use.

13

CLIMATE ACTION

Taking urgent action to combat climate change and its impacts.

We actively work to reduce our carbon footprint by integrating renewable energy solutions, such as windmill energy, into our operations and adopting electric vehicles (EVs) for transportation. Our advanced water recycling systems and waste management initiatives further minimize the environmental impact of our production processes. By embedding climate-conscious strategies into every aspect of our business, PACIFIC demonstrates that sustainable practices can drive innovation and create a positive impact. Together, we strive to combat climate change and contribute to a more resilient and sustainable future.

Main Accreditations

NSF

Material suitable for food contact.

NSF assures that a certified product, material, component or service complies with the technical requirements of the referenced standard.

Central European

We ensure our products meet
European safety, health, and
environmental standards,
which enhances marketability
and customer trust across
European markets.

Kosher

We comply with a strict policy of kosher food laws, including cleanliness, purity and quality.

ISO 9001-2015

Certification based on the standard published by the International Organization for Standardization titled "Quality management systems-Requirements".

Red List Declaration

PACIFIC publishes a Red List declaration, self-certifying that none of the materials from the Red List, as detailed on the International Living Future Institute website, is intentionally added to our product.

Product Information

Programme Information

Product Name	Pacific Engineered Surfaces, Nebula Collection
	Representing model : Aureate (3014)
Product Identification	Pacific Engineered Surfaces, Nebula Collection
	Super Jumbo Size
Product Description	A PACIFIC Surface with the service life of 50 years
UN CPC Code	The CPC Code 375 is described as Articles of concrete,
	cement and plaster
Geographical Scope	A1 + A2 (Raw material production and transport) includes
	countries: Belgium, Germany, Vietnam, India and Italy. The
	manufacturing A3, occurs in the South of India, Pacific
	Engineered Surfaces facility in Hosur. Customer use is
	modelled to include - USA, Italy, Germany, Mexico and other
	areas (Rest of the World)

Life Cycle Assesment Information

Functional Unit

The study fucntional unit is one Aureate (3014) surface, over one lifetime. A slab life cycle include 50 years of use, assuming the product would be used as a countertop in home kitchens, bathrooms and other high traffic areas. The model belongs to Nebula Series and is a "Super jumbo" Size, with a selected 20 mm thickness.

PACIFIC's LCA for Aureate (3014) offers a comprehensive evaluation of the product's environmental impact from raw material extraction to end-of-life disposal.

Dimensions

Product Dimensions	3.48m x 2.01m x 20mm
Product Weight	325 kg

Notably, all other models in PACIFIC's portfolio exhibit less than a 10% variance from Aureate (3014) in terms of environmental impact and performance metrics. This consistency reflects our dedication to maintaining high standards across our product range, providing customers with reliable and sustainable surface solutions.

Reference Service Life

50 years as seen in product declaration

Time Representativeness

Data collection was in reference to the year of 2024.

Description of System Boundaries

Cradle to Grave (A-D)

System Diagram

Quartz & Silica

Resin

Pigment

Additives

Energy Water Packaging

Α1

Extraction & Raw Material Production

A2

Transport of Raw Materials АЗ

Manufacturing

PRODUCTION STAGE

Soap Water

Transport to Customers

Installation

Maintenance

CONSTRUCTION STAGE

USE STAGE

C2

Transportation to Disposal

C4

Disposal

Benefits Beyond Boundaries

At PACIFIC, the process begins with the responsible extraction and production of raw materials such as quartz, silica, resin, and pigments. These materials are sourced from trusted suppliers across various countries: Belgium, Germany, India, Vietnam, Italy ensuring sustainable practices and high-quality inputs.

A2

Once extracted, the raw materials are transported efficiently to PACIFIC's state-of-the-art manufacturing facilities. Transportation is optimized to minimize environmental impact and maintain operational efficiency.

A3

PACIFIC's production process for Aureate (3014) takes place in state-of-the-art facilities equipped with Breton technology. This stage uses 7.2% of total energy from renewable sources, while 98% of water used in production is recycled. Hazardous waste from manufacturing is treated externally, with recyclable waste like nylon and metals redirected for reuse. Packaging waste is also minimized, with 20% of packaging materials sourced from recycled content.

A4

Finished products are distributed globally using a weighted logistics system. PACIFIC utilizes advanced shipping strategies to reduce carbon emissions. Customer locations include India, Europe, North America, and Asia-Pacific, ensuring optimized transportation routes to lower environmental impacts.

A5

During the installation process of Aureate (3014), PACIFIC surfaces are cut, polished, and fitted to meet customer specifications. The use of adhesives and sealants complies with safety and environmental standards. Installation generates less than 5% material waste, and all waste is recycled or responsibly disposed of to minimize environmental impact.

B2

PACIFIC surfaces are engineered for low-maintenance use, requiring only soap and water for regular cleaning. Over a product's 50-year lifecycle, maintenance accounts for less than 1% of environmental impact, ensuring minimal resource consumption and maximum durability.

C2

At the end of their lifecycle, PACIFIC products are transported to recycling or disposal facilities. Transport routes are planned to minimize emissions, and 68% of disposal transportation uses eco-friendly methods such as renewable energy-powered logistics.

Data Quality Assesment and Uncertainity Analysis

Indicator	A1	A2
Reliability	Observed and Reported from Manufacturing site	Weight of product was provided by manufacturer and distance calculations done online
Completeness	Data was Representaitve for PACIFIC Engineered Surfaces production unit	Data was Representaitve for PACIFIC Engineered Surfaces production unit
Temporal Correlation	Manufacturer measurement for 2024	Manufacturer measurement for 2024
Geographical Correlation	Country specific data	Country specific data
Technical Correlation	Data on related process and materials	As per transportation modes

Indicator	А3	A4	A5
Reliability	Observed and Reported from Manufacturing site	As per sales distribution data	Verified in literature
Completeness	Data was Representaitve for PACIFIC Engineered Surfaces production unit	Data was Representaitve for PACIFIC Engineered Surfaces production unit	Data was Representaitve for PACIFIC Engineered Surfaces production unit
Temporal Correlation	Manufacturer measurement for 2024	Manufacturer measurement for 2024	Manufacturer measurement for 2024
Geographical Correlation	Country specific data	Country specific data	Country specific data
Technical Correlation	Extracted from online materials and processes	As per transportation modes	Extracted from online materials and processes

Indicator	B2	C2	C4	D
Reliability	Data from literature	As per average	Provided by manufacturer	Provided by manufacturer
Completeness	Complete data available	Complete data available	Complete data available	Complete data available
Temporal Correlation	Online data	Manufacturer measurement for 2024	Manufacturer measurement for 2024	Manufacturer measurement for 2024
Geographical Correlation	Global coverage	Global coverage	Global coverage	Global coverage
Technical Correlation	Data on related process and materials	Provided by manufacturer	Provided by manufacturer	-

All data adheres to the following:

- a) Age < 5 years for generic data
- b) Age < 3 years for specific data
- c) Specific data based on 1-year average (unless deviations are justified)
- d) Time period of 100 years, in case of a landfill scenario: longer if relevant
- e) Complies with physical reality of the product as far as possible, in terms of geographical and technological coverage

Modules declared, geographical socpe, share of specific data and data variation

	F	Product sta	age		truction ss stage				Use stag	e				End of l	ife stage		Resource recovery stage
	Raw material supply	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling
Module	A1	A2	А3	A4	A5	B1	B2	ВЗ	B4	B5	B6	В7	C1	C2	C3	C4	D
Modules declared	Х	Х	X	Х	Х	Х	Х						Х	Х	X	X	Х
Geography	Int	Int	India	Int	Int	Int	Int							Int		Int	
Specific data used		than 90% sed in spe							-						-		-
Variation - products		To be fille	ed				-	-	-	-		-	-		-		
Variation - sites		To be fille	ed				-	-	-	-			-	-	-		

Content Information

Product components	Weight, kg	Post-consumer material, weight-%	Biogenic material, weight-% and kg C/kg
Quartz and Silica	245.7 Kg		
Resin	19.88 Kg		
Pigments	4.55 Kg		
Additives	1.36 Kg		
Paper	2.17 Kg		
TOTAL	273.66 Kg		
Packaging materials	Weight, kg	Weight-% (versus the product)	Weight biogenic carbon, kg G/kg
Nylon	0.25 kg	0.60%	
TOTAL	0.25 kg		

Results of the Environmental Performance Indicators

Mandatory impact category indicators according to EN 15804

Indicator	Unit	A 1-A3	A4	A5	B2	CI	C2	C3+4	D
GWP-fossil	kg CO2 eq	3.02E+02	7.77E+O1	6.68E-01	5.55E+00	0	4.82E+ 00	2.92E+00	0
GWP-biogenic	kg CO2, eq	3.43E-01	2.27E-02	5.12E-05	1.09E+00	0	1.58E- 03	2.37E-02	0
GWP-Iuluc	kg CO2 eq	1.81E-01	4.12E-02	7.62E-06	8.57E+00	0	1.96E- 03	2.98E-03	0
GWP-total	kg CO2 eq	3.01E+02	7.78E+O1	6.68E-01	1.76E+O1	0	4.83E+ 00	2.97E+00	0
ODP	kg CFC 11 eq.	1.88E-05	1.65E-05	2.52E-09	8.66E-07	0	1.06E+ 01	8.90E+00	0
АР	mol H+ eq.	1.75E+00	1.15E+00	1.73E-04	6.79E-02	0	2.00E- 02	2.49E+00	0
EP-freshwater	kg P eq.	5.94E-02	4.58E-03	2.35E+00	5.06E-02	0	3.63E- 04	8.48E-04	0
EP-marine	Kg N eq.	3.40E+00	2.94E-01	9.22E-05	7.06E-02	0	5.89E- 03	8.53E-03	0
EP-terrestrial	mol N eq.	3.54E+00	3.25E+00	8.00E-04	2.38E-01	0	6.43E- 02	8.93E+31	0
POCP	kg NMVOC eq.	1.21E+00	8.72E-01	1.99E-04	3.88E+00	0	1.95E- 02	2.68E-02	0
ADP-minerals & metals	kg Sb eq.	2.32E+00	2.04E-04	6.36E-08	1.15E-O4	0	1.64E- 05	9.55E-06	0
ADP-fossil*	MJ	5.89E+03	1.09E+03	1.95E-01	5.77E+01	0	7.11E+O1	6.87E+01	0
WDP*	МЗ	1.61E+02	3.10E+00	3.17E-02	2.92E+01	0	2.46E- 01	2.99E+00	0

Acronyms

GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater Eutrophication potential, fraction of nutrients reaching freshwater end compartment; EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals * Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

^{*} Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

^{**} Waste - The indicators refer to waste quantities leaving the system boundaries, which means that the environmental impacts of the waste treatment are not considered in the environmental indicators. As some background databases (e.g. ecoinvent) follow the approach to include waste treatment in the system boundaries, the results of these indicators are highly dependent on the selected back-ground databases. As only ecoinvent datasets were used, which include the waste treatment in their system boundaries, the waste production indicators are 0.

^{***} The results of all C3 indicators are 0.

Other Environmental Performance Indicators

Impact Category	Unit	A1-A3	Α4	A 5	В2	C1	C2	C3+4	D
Climate Change	kg CO2 eq	3.02E+02	7.78E+01	6.68E-01	1.60E+01	0	4.83E+00	2.82E+00	0
Ozone Depletion	kg CFC 22 eq	1.89E-05	1.65E-05	2.52E-09	7.84E-07	0	1.06E-06	8.45E-07	0
Ionising radiation	kBq U-235 eq	7.92E+00	4.94E+00	7.05E-04	3.73E-01	0	3.25E-01	3.04E-01	0
Photochemical ozone formation	kg NMVOC eq	1.22E+00	8.72E-01	1.99E-04	3.50E-02	0	1.95E-02	2.54E-02	0
Particular matter	disease inc	1.08E-05	4.21E-06	1.04E-09	8.75E-07	0	3.33E-07	4.60E-07	0
Human toxicity, non- cancer	CTUh	2.66E-06	7.42E-07	2.31E-09	2.97E-07	0	5.94E-08	3.14E-08	0
Human toxicity, cancer	CTUh	4.85E-07	3.58E-08	6.13E-11	1.45E-08	0	1.82E-09	2.04E-09	0
Acidification	mol H+eq	1.76E+00	1.15E+00	1.73E-04	6.14E-02	0	2.00E-02	2.35E-02	0
Eutrophication, freshwater	kg P eq	5.96E-02	4.59E-03	2.34E-06	4.58E-02	0	3.63E-04	8.06E-04	0
Eutrophication, marine	kg N eq	3.41E-01	2.94E-01	9.22E-05	6.39E-02	0	5.89E-03	8.10E-03	0
Eutrophication, terrestrial	mol N eq	3.56E+00	3.25E+00	8.00E-04	2.15E-01	0	6.43E-02	8.81E-02	0
Ecotoxicity, freshwater	CTUe	4.04E+03	8.49E+02	1.45E+00	7.74E+02	0	6.18E+O1	5.09E+01	0
Land use	Pt	1.81E+03	5.33E+02	8.99E-02	4.86E+02	0	4.83E+01	1.57E+02	0
Water use	m3 depriv	1.61E+02	3.10E+00	3.17E-02	2.65E+01	0	2.46E-01	2.84E+00	0
Resource use, fossils	MJ	5.91E+03	1.09E+03	1.95E-01	5.22E+01	0	7.11E+O1	6.53E+01	0
Resource use, minerals and metals	kg Sb eq	2.32E-03	2.04E-04	6.36E-08	1.04E-04	0	1.64E-05	9.07E-06	0

Impact category	Unit	A1	A2	A3	Α4	A5	B2	C1	C2	C3+4	D
Carbon monoxide	kg	0.386979 763	0.0404449 3033	0.1142616 935	0.14	4.99E-05	0.00957 303755	0	0.010252 53241	0.0122323 47	0
Carbon, biogenic	kg	0.1405516 626	-0.002804 484564	0.11151293 08	-0.012676 83037	-9.83E-06	1.9319524 42	0	-0.001586 242224	-0.00307 950988	0
Dinitrogen monoxide	kg	0.006016 814676	0.0010843 6698	0.002144 502252	0	0	0.003313 97766	0	0.000232 316604	8.32E-05	0
Methane	kg	0.956805 948	0.0664795 8209	0.283746 839	0.23	4.64E-05	0.031293 74405	0	0.0151270 0391	0.0144210 9966	0
Lead	kg	0.0001651 122	2.42E-05	3.87E-05	9.34E-05	2.67E-08	8.67E-06	0	8.68E-06	1.87E-06	0
Zinc	kg	0.000207 917496	6.46E-05	3.30E-05	0.000250 958268	1.31E-07	2.04E-05	0	2.37E-05	3.22E-06	0
Particulates	kg	0.2607641 917	0.0452329 1964	0.069024 41474	0.1514540 452	2.37E-05	0.0177311 3277	0	0.008997 758928	0.005422 20104	0
Particulates >10 um	kg	0.1485581 033	0.0225222 5603	0.041047 37615	0.0773727 6211	1.31E-05	0.00524 318472	0	0.005093 79786	0.002213 94886	0
Particulates, >2.5 um and <10	kg	0.042784 07638	0.01176169 028	0.006243 8526	0.038325 70325	4.82E-06	0.00459 583128	0	0.002009 171628	0.000764 49744	0
Heat, waste	kg	18.888969 6	4.0124406 2	43.58393 032	14.670359 03	8.679059 237	38.37525 603	0	1.1847338 82	1.4668744 28	0
Oils, unspecified	kg	0.006994 688472	0.0047228 6736	0.002567 448396	0.0162170 4575	1.61E-06	0.001441 674	0	106570.18 8	0.000757 39438	0
Aerosole	kBq	0.1134543 568	0.0028748 62872	0.062701 96896	0.0106078 4338	4.26E-06	0.00347 649575	0	879110.02 8	0.001046 77438	0
Actinides (air)	kBq	0.0132987 2026	0.000628 203096	0.0134166 1338	0.002308 633488	9.52E-07	0.0011811 4551	0	0.0001891 74276	0.000213 6695	0
Actinides (water)	kBq	0.1555694 291	0.0716938 9009	0.032051 08253	0.245046 8048	2.72E-05	0.008881 23603	0	0.0158237 573	0.1340624 718	0
Noble gas	kBq	1668.809 038	34.084299 49	62.86338 274	123.318267 8	0.0470113 3148	39.53555 918	0	9.6566997 89	12.540550 48	0
Nuclides	kBq	0.573525 6023	0.2157654 312	0.1282729 284	1.11644093 2	1.11E-04	0.025974 89922	0	0.0714774 5082	0.0587871 0286	0
Radon (+ radium)	kBq	2696.456 992	11980908. 4	229.0092 487	433.721135 2	0.1708054 852	148.4662 63	0	33.83204 89	46.610986 74	0
Radium	kBq	2.680849 062	2.4995269 62	0.8764881 311	8.51937671 2	0.000802 768932	0.146201 0249	0	5441974.2 36	0.4440351 13	0
Tritium	kBq	329.0900 976	4.4858316 38	8.0212157 39	16.258009 64	0.005989 765068	4.855417 945	0	1.2797109 5	1.5098714 2	0
Water	M3	3.3535019 92	0.0291687 179	0.4124136 038	0.1063620 73	0.000959 05692	0.4471819 44	0	0.008523 28818	0.067477 53088	0
Freshwater	M3	3.3413322 35	0.0377974 6362	0.413062 8145	0.1360236 154	0.000961 778844	4447730 8.39	0	0.0104811 5059	0.069095 67282	0

Indicator	Sub Indicator	A1	A2	А3	A4	A5	B2	C1	C2	C3+4	D
Use of rewnewable primary energy	Excluding Renewable Primary energy resources as raw material	290	3.538	31.204	12.7832	0.0116	230.1083	0	0.9976	1.1448	
	Renewable Primary energy resources as raw material	44.1728	44.1728		-		-		0	-	-
	Total										
Use of non renewable primary energy	Excluding Renewable Primary energy resources as raw material	2680.9224	344.752	1240.3648	1184.8704	0.2088	57.7821	0	78.126	66.992	_
	Renewable Primary energy resources as raw material	1653.7192	-	97.9272	-		-	0	-	-	-
	Total										
Use of Secondary material								0			-
Use of renewable secondary fuels		N/A	N/A	N/A	N/A	N/A	N/A	0	N/A	N/A	N/A
Use of non-renewable secondary fuels		N/A	N/A	N/A	N/A	N/A	N/A	0	N/A	N/A	N/A
Net use of fresh Water		3.4684	0.0348	0.4292	0.1392	0	0.4444	0	0.0116	0.0742	

Environmental Information describing output flows

Indicator	Unit	Total	AI	A2	А3	A4	A5	B2	CI	C2	C3+4	D
Components for re-use	Kg	0	0	0	0	0	0	0	0	0	0	0
Materials for recycling	kg	0	0	0	0	0	0	0	0	0	0	u
Exported Energy - MJ	M1	0	0	0	0	0	0	0	0	U	0	0
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0	0	0
7.2.5 Information on Biogenic Content		0	0	0	0	0	0	0	0	0	0	0
Biogenic carbon content in product kg C	kg	0	0	0	0	0	0	0	0	0	0	0
Biogenic carbon content in accompanying packaging	kg	0	0	0	0	0	0	0	0	0	0	0

Phone

+91 82200 17422

Location

Hosur, Tamil Nadu, India

Email

info@thepacific.group

Website

www.pacific-surfaces.com

